Literature to Support Approach

Regenerative Agriculture Takes Many Forms

Alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, the list goes on. An enormous quantity of distinct agroforestry systems have remained in relevance for a long time, some being far older than others. Perkins (2019), Voort et al (2020), Burgess et al (2020), and Neto et al (2016) give us a glimpse of some such forms; clearly, this subject is complex.

Although specific and inter-comparable works of research are uncommon, consensus does exist regarding the benefit of trees: Toensmeier (2016), P. Pardon et al (2017), Lorenz and Rattan (2014), and R. Cardinael et al (2020) conclude that their addition can multiply cropland carbon capture by a factor of 2-10x. Not only this, large increases in soil nutrients reduce or eliminate the need for fertiliser.

Visualizing Agroforestry: Carbon Capture Adding Trees

According to Johnson et al (2015) and J. Wubs (2016), improvements in both Soil Organic Carbon (SOC) and crop yields can be kickstarted and significantly increased by adding and maintaining the correct microbiome to the soil. Although this can be done before, during, or after planting, there is no inter-method comparison research at the time of writing. Therefore, all three application times will remain in use until research arises regarding best practices for our agroforestry model.

The Scave model was designed taking inspiration from several different works of research. The framework comes from combining the general ideas from Neto et al (2016), placement and use of tree varieties from Frascarelli (2017) and Boulestreau and van Eck (2016), and finally model strips from Perkins (2019). The yield data and method come from Burgess et al (2020), and the financial model of S. Jourquin (2012) suggested planting grain annuals in between tree strips.

Our grain of choice is, when possible, a high yield “cross composite population” (CCP) wheat. This was chosen due to the need for high yields and population wheat’s adaptability as studied in Weedon and Finckh (2019). Based on this study, alongside personal advice from the author, we constructed our wheat/peas intercrop model, one of our first planting models. Later, U. Prins (2015) and J.J. Neuvel (1991) influenced us to add beans three years after the first sow. We consistently intercrop with yearly rotation in the crop strips.


Agenda Gotsch, dos Santos Rebello, J. F., & Ghiringhelo Sakamoto, D. (2019, August). Large-scale syntropic farming: Results and challenges.

Ayangbenro, A. S., & Babalola, O. O. (2021). Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology, 25, 100173.

Boulestreau, Y., & van Eck, W. (2016). Design and Performance Evaluation of a 1Ha Productive Food Forest Model.

Burgess, P. (n.d.). The Agroforestry Handbook. The Soil Association. Retrieved September 30, 2021, from

Calvo De Anta, R., Luís, E., Febrero-Bande, M., Galiñanes, J., Macías, F., Ortíz, R., & Casás, F. (2020). Soil organic carbon in peninsular Spain: Influence of environmental factors and spatial distribution. Geoderma, 370, 114365.

Cardinael, R., Umulisa, V., Toudert, A., Olivier, A., Bockel, L., & Bernoux, M. (2018). Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environmental Research Letters, 13(12), 124020.

Cooperfloresta, Corrêa Neto, N. E., Maranhão Messerschmidt, N., Steenbock, W., & Facina Monnerat, P. (2016, October). Agroflorestando o mundo de facão a trator.

Dahmardeh, M. (2013). Intercropping Barley (Hordeum vulgar L.) and Lentil (Lens culinaris L.): Yield and Intercropping Advantages. Journal of Agricultural Science, 5(4).

de Visser, C., Sukkel, W., Kempenaar, C., van der Wal, T., de Wolf, P., Visser, A., Smit, B., Schoorlemmer, H., Schoutsen, M., Klompe, K., Veldhuisen, B., Selin-Noren, I., van Dijk, C., Hol, S., van der Voort, M., & Janssens, B. (2020). Ontwerp Boerderij van de Toekomst. Stichting Wageningen Research. Published.

Frascarelli, A. (2017). Scelte Tecnice ed Economiche nella coltivazione del nocciolo in Umbria [Slides]. Cesarweb.

García-Morote, F., López-Serrano, F., Martínez-García, E., Andrés-Abellán, M., Dadi, T., Candel, D., Rubio, E., & Lucas-Borja, M. (2014). Stem Biomass Production of Paulownia elongata × P. fortunei under Low Irrigation in a Semi-Arid Environment. Forests, 5(10), 2505–2520.

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (2018). SUMMARY FOR POLICYMAKERS OF THE IPBES ASSESSMENT REPORT ON LAND DEGRADATION AND RESTORATION.

Jing, G., Hu, T., Liu, J., Cheng, J., & Li, W. (2020). Biomass Estimation, Nutrient Accumulation, and Stoichiometric Characteristics of Dominant Tree Species in the Semi-Arid Region on the Loess Plateau of China. Sustainability, 12(1), 339.

Johnson, D., Ellington, J., & Eaton, W. (2015). Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix. PeerJ. Published.

Jourquin, S. (2012) Rentabiliteits- en kostprijsanalyse granen voor de korrel. Resultaten van bedrijven uit het landbouwmonitoringsnetwerk, Beleidsdomein Landbouw en Visserij, afdeling Monitoring en Studie, Brussel.

Lorenz, K., & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A review. Agronomy for Sustainable Development, 34(2), 443–454.

Louis Blok Instituut, & Koopmans, C. J. (2019). Agro-economische inpassing van strokenteelt.

Neuvel, J.J. (1991). Teelt van Tuinbonen. Informatie en Kenniscentrum voor de Akkerbouw en de Groenteteelt in de Vollegrond.

Pardon, P., Reubens, B., Reheul, D., Mertens, J., de Frenne, P., Coussement, T., Janssens, P., & Verheyen, K. (2017). Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agriculture, Ecosystems & Environment, 247, 98–111.

Perkins, R. (2019). Regenerative Agriculture – A Practical Whole Systems Guide to Making Small Farms Work. Richard Perkins.

Pinchot, C. C., Schlarbaum, S. E., Clark, S. L., Saxton, A. M., Sharp, A. M., Schweitzer, C. J., & Hebard, F. V. (2017). Growth, survival, and competitive ability of chestnut (Castanea Mill.) seedlings planted across a gradient of light levels. New Forests, 48(4), 491–512.

Prins, U. (2015). Teelthandleiding Peulvruchten op natuurgronden. Louis Blok Instituut.

Shanmugam, S., Dalal, R., Joosten, H., Raison, R., & Joo, G. (2018). SOC Stock Changes and Greenhouse Gas Emissions Following Tropical Land Use Conversions to Plantation Crops on Mineral Soils, with a Special Focus on Oil Palm and Rubber Plantations. Agriculture, 8(9), 133.

Toensmeier, E., & Herren, H. (2016). The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security (Illustrated ed.). Chelsea Green Publishing.

van der Voort, M., Schoorlemmer, H., Kamp, J., Veldhuisen, B., & Booij, J. (2020). Economische verkenning strokenteelt met vaste rijpaden : SMARAGD – Werkpakket 1 – modellering. Stichting Wageningen University. Published.

Weedon, O. D., & Finckh, M. R. (2019). Heterogeneous Winter Wheat Populations Differ in Yield Stability Depending on their Genetic Background and Management System. Sustainability, 11(21), 6172.

Wubs, E. R. J., van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2(8).